sábado, 22 de noviembre de 2014

RECTA DE REGRESIÓN MÍNIMOS CUADRADOS

Cuando la nube de puntos adopta una forma definida, se pueden aproximar sus puntos mediante una línea curva en general, que llamamos curva de regresión.

Sólo nos ocuparemos del caso en el que la curva de regresión es una recta, llamada recta de regresión. Nos centraremos entonces en calcular la ecuación de una recta que "mejor se adapte" a una nube de puntos dada. En los ejemplos anteriores lo hemos hecho a ojo, ahora lo haremos con un criterio más preciso.

Para ello existen varios métodos, siendo el más utilizado el de los mínimos cuadrados. Consiste en hacer mínima la suma de los cuadrados de las diferencias entre los valores experimentales y los obtenidos mediante la recta. Por lo tanto, si consideramos la Y=aX+b, mediríamos lo bien (o mal) que se ajusta a nuestros puntos por medio de la cantidad

   i=1 N ( y i ( a x i +b ) ) 2 =  i=1 N ( y i a x i b ) 2

 

y la recta que estamos buscando es la que haga esta cantidad lo más pequeña posible.

Una vez realizados los cálculos correspondientes, se tiene que la ecuación de la recta de regresión es:

y y ¯ = σ xy σ x 2 (x x ¯ )

donde σx σy  son las desviaciones típicas de x e y.

Se comprueba que, como indicamos anteriormente, la recta obtenida pasa por el punto (x, y) que coincide con el centro de gravedad de la nube de puntos.

Ejemplo: Para el ejemplo de Pesos (kgs.) - Estaturas (cms.)

Peso en Kgs.

60

65

70

70

68

50

60

Altura en cms.

167

170

170

180

170

155

160

Frecuencias (ni)

1

5

2

4

2

1

1

y - y = 1.11(x-x )

atan (1.11) = 47,89 º

No hay comentarios:

Publicar un comentario